Oxidative Modulation of Transient Potassium Current by Arachidonic Acid in Brain Central Neurons

نویسندگان

  • Plamena Angelova
  • Christoph Markschies
  • Christian Limberg
  • Andreas Elepfandt
  • Uwe Heinemann
  • Dietmar Schmitz
چکیده

Oxidative stress and dysfunction of potassium channels are believed to play a role in neuronal death in a number of CNS diseases (e.g. Alzheimer’s disease, epilepsy). The present study addresses selective neuronal vulnerability to oxidative stress by studying oxidative modulation of potassium channels in entorhinal cortex (EC) layer II stellate neurons (cell loss early in AD) and layer III pyramidal neurons (early damage in TLE), in comparison to hippocampal CA1 pyramidal neurons (late damage in TLE and AD). Using whole-cell patch-clamp, differential inhibition of transient IA and delayed rectifier K-currents IK(V) by arachidonic acid (AA) and H2O2 was demonstrated. Intracellular AA (1 pM) reduced IA in EC neurons significantly stronger than in CA1 neurons. AA affected the voltage dependence of steady-state inactivation as well. ETYA mimicked the effect of AA, excluding its metabolites as mediators of IA modulation. Neither AA nor ETYA reduced IK(V). In contrast, a non-lipid oxidizing agent, H2O2 reduced IA more effectively and robustly attenuated IK(V) in CA1, compared to EC neurons. AAmediated reduction of IA was blocked by free radical scavengers (glutathione, ascorbic acid, Trolox). Antioxidants did not simply inhibit AA and H2O2 effects. In particular, they even enhanced AA effects, suggesting more complex modulation of these currents in slices, compared to culture. Moreover, intracellular antioxidants, themselves, influenced maximal conductance and voltage-conductance characteristics of IA and IK(V). This should be considered in design of anti-oxidative therapies in AD and TLE. Heterologous expression of Kv1.4 and of Kv4.2 cDNA in HEK-293 cells formed functional channels and elicited A-type currents, which shared similar biophysical characteristics with native IA from the hippocampus. These currents were strongly decreased upon administration of 1pM AA, demonstrating that at least one of multiple sites for AA action is situated on the pore-forming alfa-subunit of the A-channel. In conclusion, beside contribution to cell damage, ROS may regulate physiological processes by acting on different signalling pathways. Since voltage-gated K-channels underlie many important cellular functions modulation of these channels by ROS would represent a mechanism for fine tuning of cellular processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic modulation of Kv4-mediated A-current by arachidonic acid is dependent on potassium channel interacting proteins.

The Kv4 subfamily of voltage-gated potassium channels is responsible for the transient A-type potassium current that operates at subthreshold membrane potentials to control membrane excitability. Arachidonic acid was shown recently to modulate both the peak amplitude and kinetics of the hippocampal A-current. However, in Xenopus oocytes, arachidonic acid only inhibited the peak amplitude of Kv4...

متن کامل

Oxidative downmodulation of the transient K-current IA by intracellular arachidonic acid in rat hippocampal neurons.

Membrane-permeable arachidonic acid (AA) is liberated in a Ca2+-dependent way inside cells. By using whole cell patch clamp we show that intracellular AA (1 pM) selectively reduces IA in rat hippocampal neurons, whereas extracellular application requires a 10(6)-fold concentration. The nonmetabolized AA analogue ETYA mimics the effect of AA that is blocked by ascorbic acid or intracellular glut...

متن کامل

-Subunit–Dependent Modulation of hSlo BK Current by Arachidonic Acid

Sun X, Zhou D, Zhang P, Moczydlowski EG, Haddad GG. -Subunit–dependent modulation of hSlo BK current by arachidonic acid. J Neurophysiol 97: 62–69, 2007. First published October 4, 2006; doi:10.1152/jn.00700.2006. In this study, we examined the effect of arachidonic acid (AA) on the BK -subunit with or without -subunits expressed in Xenopus oocytes. In excised patches, AA potentiated the hSlocu...

متن کامل

Arachidonic acid inhibits transient potassium currents and broadens action potentials during electrographic seizures in hippocampal pyramidal and inhibitory interneurons.

The transient outward potassium current was studied in outside-out macropatches excised from the soma of CA1 pyramidal neurons and stratum (st.) oriens-alveus inhibitory interneurons in rat hippocampal slices. Arachidonic acid dose dependently decreased the charge transfer associated with the transient current, concomitant with an increase in the rate of current inactivation. Arachidonic acid (...

متن کامل

On the role of arachidonic acid in M-current modulation by muscarine in bullfrog sympathetic neurons.

The modulation by muscarine or LHRH of the potassium M-current (IM) in whole-cell voltage-clamped bullfrog sympathetic neurons presents an initial phase of current reduction, followed, after agonist removal, by a transient enhancement or "overrecovery." Employing a fast solution exchange system, an inhibitory process and an enhancing process were distinguished kinetically. The extent of overrec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007